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ABSTRACT

The activity of the interplanetary medium arises from occasional

transient outbursts of the active corona and, for the most part, from
the interaction of fast and slow streams in the solar wind. The basic

driver is the heat input to the corona, both transient and steady.

The fast streams issue from coronal holes where the heat input may
be Alfv6n waves with root mean squared (rms) fluid velocities of

nearly 102 km/sec or may be wholly or in part the waves refracted

into the hole from neighboring active regions. If the latter, then

the character of the wind from the coronal hole depends upon the
proximity and vigor of active regions, with significant differences

between the polar and low latitude solar wind. In any case, there

is no observational support for any of these ideas, so that the primary

cause of the wind from the Sun, as well as any other similar star,

is not without mystery. It is to be hoped that ground-based obser-

vations together with the new input from the Solar Optical Telescope

and the International Solar Polar Mission may in time succeed in

clearing up some of the basic questions.
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1. INTRODUCTION

The interplanetary medium, and the entire heliosphere, are a consequence of

the continual expansion of the solar corona. The activity of the interplanetary

medium arises from the occasional transient heating of the corona, and the

mixture of fast and slow regions of wind from different parts of the corona.

The basic energy source is the occasional flare and the coronal heating that

maintains the temperature of the corona. It is the purpose of this presenta-
tion to review what we know and do not know of the heating.

The expansion of the corona follows from its high temperature, and it is

generally accepted that the high temperature is caused by the dissipation of
motions initiated in the convective zone. The difficulty is that the motions,

and their ultimate dissipation in the corona, have proved elusive.

The corona is conveniently classified into three distinct regions, depending

upon the intensity of the X-ray emission. There is the active X-ray corona

(N = 101° atoms/cm 3, T = 2.5 × 106 K, B = 102 gauss), requiring an energy in-

put of about lxl07 ergs/cm 2 sec [Withbroe and Noyes, 1977]. The gas is con-

fined in the closed bipolar magnetic field, so that most of the energy goes
into radiation and thermal conduction downward into the transient region.

There is the quiet corona, emitting a faint glow of X-rays (N=108

atoms/cm 3, T = 1.5 × 10 6 K, B = 10 gauss) maintained by an energy input of

3 x 105 ergs/cm 2 sec). Finally there is the tenuous coronal hole, conspicuous

by the absence of X-ray emission (N =0.5 x 10s atoms/cm 3, T = 1.5 × 106 K,

B = 10 gauss) requiring an energy input of about 1 × 10 6 ergs/cm 2 sec [Zirker,

1977; Withbroe and Noyes, 1977; Leer, Holzer, and Fla, 1982; and Withbroe

et al., 1985]. The magnetic field of the coronal holes opens outward into space,

permitting free expansion of the coronal gas, so that most of the energy goes

into production of the solar wind.

The fast streams in the solar wind come from the coronal holes [Hundhausen,

1972; Krieger, Timothy, and Roelof, 1973; Zirker, 1977; and Rottman, Or-

rail, and Klimchuk, 1982]. Evidently most of the wind, including the slow

streams, is produced in and around coronal holes, with the quiet regions con-

tributing to the slow wind [see discussion in Withbroe and Noyes, 1977]. We
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wouldexpectthat thecoronalgasonanyopenfield linescontributesto the
wind. Thelowestenergystatefor themagneticfield isa closedconfigura-
tion, sothe field is openonly whereit is sufficientlyweakto bepushedout
by thepressureof thecoronalgas[Parker,1963].Thedivisionbetweenthe
activeand the quiet coronamaydependasmuchuponthe closureof the
magneticfield asuponthe field strength.

A closeexaminationof themechanismsavailablefor heatingthecoronasug-
geststhat therearequalitativeaswellasquantitativedifferencesbetweenac-
tivecoronalregionsandcoronalholes.Firstof all,Rosner,Tucker,andVaiana
[1978], have emphasized that the observations of the active corona, and the

theoretical models constructed from those observations, make it clear that

(a) the heat input is distributed along the emitting X-ray loops and (b) there
is a direct relation between heat input (ergs/cm 2 sec) and magnetic field. The

relationship depends very little on the dimensions L of the region [Golub et

al., 1980]. Thus, the X-ray bright points (L - 104 km) have approximately

the same surface brightness as the X-ray corona above a normal active region

(L - 2 x 105 km). The evidence is that the regions of re-entrant, i.e., closed,

field, are heated largely through the dynamical nonequilibrium of the wrap-

ping and interweaving of the lines of force, whereas the only known mechanism

for heating the coronal regions with open fields is the dissipation of

hydromagnetic waves. Thus it seems that it must be the generation and dissipa-

tion of magnetohydrodynamic waves that largely produce the solar wind and

the heliosphere. The problem is to confirm this general concept with concrete
facts.

Observations show wave motions, but with such small amplitudes that they
represent no more than 105 ergs/cm 2 sec [Athay and White, 1978, 1979a,b;

Brunet, 1978]. Hence, if there are enough waves to heat the corona, the scale
of the waves must be so small (<104 km) that they are not resolved in the

spectroscopic studies [Cheng, Doschek, and Feldman, 1979; Feldman, 1983;

and Habbal, Leer, and Holzer, 1984; see also the results for sunspots, Beckers,

1976; Beckers and Schneeberger, 1977]. Unresolved waves are part of the
"microturbulence", contributing to the line widths which place an upper limit

of about 25 km/sec on the rms velocity <v2> _. Sound waves of this

amplitude carry negligible energy because the speed of sound is only about

2 × 10 2 km/sec. If we assume, then, that the microturbulence is entirely the
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resultof unresolvedAlfv6n wavesall propagatingupwardalong thefield,
the energyflux is boundedby the upper limit p <v2> VA, where VA is the
Alfv6n speed with a value of the order of 2 × 10 3 km/sec throughout the en-

tire corona. This upper bound is 2 × 10 7 ergs/cm 2 sec in the active corona but

only 105 ergs/cm 2 sec in the coronal hole as a consequence of the low densi-

ty. It is immediately evident that the Alfv6n wave amplitude must be much

larger, of the order of 75 km/sec, if the coronal hole is to be heated by wave
dissipation. We may speculate that the gas density in the coronal hole is so

small that its contribution to the observed line widths is negligible when in-

tegrated along the line of sight, so that the necessary 75 km/sec rms velocities

are undetected. Such velocities are relatively small, in the sense that the ratio

of the velocity amplitude to the phase velocity, and the fractional variation

AB/B of the magnetic field, are small, approximately 0.05. So perhaps the

coronal hole is heated by the dissipation of Alfv6n waves, or perhaps fast

mode waves, with periods of, say, 100 sec and rms velocities of the order of

50-100 km/sec. But this is only a conjecture.

There are difficulties of another type in the active corona. The upper limit

on the total wave flux of 2 x 10 7 ergs/cm 2 sec is sufficient to supply the ac-

tive corona, but most of it must be dissipated in the first pass up around the

bipolar field. The downward wave flux at the foot points of each re-entrant

line of force must not be more than a third of the upward wave flux if the

net upward energy flux is to be 1 x 10 7 ergs/cm 2 sec. What is more, the

dissipation must be equally effective over scales ranging from 104 km to

2 x 105 km, i.e. Alfven transit times of 5 to 100 sec. Most of the power in

the observed small-scale fluctuations in the Sun lies at periods of 100 sec or

more, with no theoretical reason to expect much power at shorter periods.

It must be remembered, too, that whatever the distribution of wave power

over period, it all contributes directly to the upper limit of 25 km/sec on the

rms velocity.

How, then, are we to imagine that the dissipation of Alfv6n waves supplies
1 × 107 ergs/cm 2 sec more or less equally to all scales? If, without any

theoretical or observational basis, we postulate waves of sufficiently short

wavelength as to heat the ephemeral active regions, dissipating over distances

of 2 x 104 km, then these same waves dissipating over 2 x 104 km would heat
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only the lowerendsof thenormalcoronalloopswith scalesof 2× 105 km.

But Rosner, Tucker, and Vaiana [1978] showed that the heating is broadly

distributed, if not entirely uniform, along the X-ray coronal loops. If, on the

other hand, we imagine that the small, medium, and large active coronal

regions are each heated by waves at different frequencies which just happen

to provide the same heat input at all scales from small to large, we violate

the observational upper limit of 25 km/sec on the rms gas velocity. For even
one such frequency band carrying 1 x 107 ergs/cm 2 sec provides the upper

limit of 25 km/sec on the rms gas velocity if it is not dissipated, leaving no

room for another band or two, one of which is dissipated to supply the
necessary 1 x 107 ergs/cm 2 sec. To see how this works note that a velocity of

25 km/sec is necessary to transport 1 x 107 ergs/cm 2 sec upward along the

field. If the waves are not dissipated (and no one knows how to dissipate waves

of such small amplitude AB/B - 0.05 in so short a distance), then they prop-
agate undiminished up around the re-entrant field and back down into the

photosphere at the other end. Hence, both ends of the field have upward and

downward propagating waves with an rms fluid velocity of 25 km/sec and
zero net energy flux. The observational limit of 25 km/sec permits no other

waves. So there is no room for undissipated waves. Somehow, then, we would

require that waves of small amplitude dissipate more or less uniformly and

completely along fields with lengths anywhere from 10 4 km to 2 x 105 km.

To achieve this requires physical effects unknown to this author.

This leaves us with the alternative that the active corona, enclosed in the re-

entrant fields of bipolar regions on the surface of the Sun, is heated prin-

cipally by the current sheets produced by the shuffling and intermixing of

the footpoints of the field [Parker, 1979, 1982, 1983a,b, 1984, 1985; Low,

1985]. The dissipation is then the intrinsic dynamical nonequilibrium and con-
tinual neutral point reconnection in the current sheets. The input of 1 x 10 7

ergs/cm 2 sec follows from shuffling of the footpoints at the not implausible

speeds of 0.5 km/sec, wrapping the individual flux tubes about their neighbors

with pitch angles of the order of 10-20 ° [Parker, 1983c].

Unfortunately, at the present time there is no observational information

available on either the oscillations of the footpoints of the fields (producing

Alfv6n waves, etc.) or the wandering of the foo_points among the neighbor-
ing footpoints (producing the dissipative current _heets). The individual

79



magneticfibrils arenot resolvedin ground-basedobservations,sothat their
individualmotionsaresimplynot known.Thedeterminationof themotions
of thefibrils is just oneof themanyfundamentaltasksthat awaitstheSolar
OpticalTelescope(SOT)in thenextdecade.Without theSOTthebasicmo-
tionsof thefibrils, andthestrainratewithin thefield, cannotbedetermined,
andthepowersourceof the coronawill remaina matterof "not implausi-
ble" assumptions,i.e.,ignorance.It shouldbepointedout thatthehigh-speed
turbulenceandintensejetsobservedin thecoronaby Bruecknerand Bartoe
[1983] and Withbroe, Habbal, and Ronan [1985] may be a direct manifesta-

tion of the dynamical nonequilibrium of the current sheets in the corona.

What, then, of the coronal hole--the source of the high-speed streams in the

interplanetary medium? Whatever shuffling and intermixing of the footpoints
we may imagine, the associated strains propagate outward into interplanetary

space at the Alfven speed, so that the lines of force do not accumulate any

significant mutual wrapping and interweaving. There is no formation of cur-

rent sheets and no significant dissipation. And as already noted, there is no

indication of sufficient microturbulence in coronal holes to provide the

necessary 106 ergs/cm 2 sec, in the form of outward propagating Alfv6n

waves. Again we will have to turn to the Solar Optical Telescope to provide

complete quantitative information on the oscillatory motions of the magnetic

fibrils at the photosphere from which we might estimate the amplitude of the

waves in the corona. It will be recalled that wave amplitudes (microturbulence)

of 50-100 km/sec are required.

While waiting for the SOT we may hope that some ingenious ground-based

observation, or more modest space observation, will provide preliminary clues.

In the simplest case, Alfv6n waves propagating along a slowly varying magnetic

field and slowly varying fluid density have a velocity amplitude that varies

as p -'_. The density decrease from the photosphere, where the number den-

sity is of the order of 1017 atoms/cm 3, to the coronal hole, where the density

is perhaps 108 cm 3, is a factor of 10 9. Thus, 0.5 km/sec in the photosphere

produces 100 km/sec in the coronal hole. In actual fact the abrupt decline

of the gas density, the associated rapid expansion of the individual fibrils to
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fill all availablespace,andthedynamicalspiculephenomenontogethermake
any quantitativeextrapolationfrom the photospherea morecomplicated
operation.

Hollweg,Jackson,andGalloway[1982]havetreatedthepropagationof Alfv6n
wavesin coronalholes.More recentlyDavila [1985]hasexploredhow the
wavesmightboostthewindalongto producethehighspeedstreams[Holzer
andLeer, 1980;Leerand Holzer, 1980].Hedoesnot discusstheorigin of
the Alfven waves.

Therole of spicules in coronal heating is an intriguing question [cf. Athay

and Holzer, 1982; Withbroe, 1983; and Sterling and HoUweg, 1984], although

it would appear that their effects do not extend more than 5 × 104 km above

the transition region.

Seeking alternatives to direct supply of Alfv6n waves to the coronal hole, Fla

et al. [1984] have noted the possibility that fast mode waves are refracted in-

to the hole from a neighboring active coronal region [Habbal, Leer, and

Holzer, 1979]. The authors have provided a quantitative exposition of the

phenomenon. The magnitude of the effect needs to be established in some

way from observation. An obvious question is whether the vigor of the high-

speed streams in the solar wind reflect the proximity of active regions to the

coronal holes throughout the 11-year cycle of activity. Generally speaking,

the coronal holes at low latitudes are closer to active regions than the polar

coronal holes, so that a direct comparison of low altitude fast streams with

the polar wind [cf. Orrall, Rottman, and Klimchuk, 1983] should be instruc-

tive. The International Solar Polar Mission (ISPM) will provide fundamen-

tal information on this question. Indeed the entire picture of the connection

of high-speed streams at low latitudes to the polar coronal holes will be ex-

amined by the ISPM. At present we know only that the stream activity at

the solar equator correlates best with the magnetic fields and coronal struc-

ture at latitudes _+30 ° from the work of Wilcox and others [Wilcox, 1968;

Svalgaard, Wilcox, and Duvall, 1974; Svalgaard and Wilcox, 1975; Svalgaard,
et al., 1975; and Hundhausen, 1977].

Whatever the source of the waves, it is difficult to imagine heating coronal

holes by any means other than the dissipation of magnetohydrodynamic waves.
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Thedissipationposesnoevidentproblem.Thecoronalholesareheatedgently
overlongdistances(10H- 1012cm)out into space.Oversuchextendedscales
the Alfven propagationtimesare5× 102to 104sec,i.e., 5 to 100timesthe
100secwaveperiod.Thereissufficienttimefor a varietyof dissipationef-
fectsto develop,e.g.nonlinearsteepening[Hollweg,Jackson,andGalloway,
1982]phasemixing, Landaudampingof the fastandslowmodes[Barnes,
1966,1969,1974,1979;Barnes,Hartle, and Bredekamp,1971;Hungand
Barnes,1973a,b, c; andHabbalandLeer,1982].A planetransverseAlfv6n
wavewith smallfluid motionV (1_'1 << v A) does not damp significantly.

But if the Alfv6n speed V A varies in the transverse direction of the fluid mo-

tion¥ (V. X7 V A _ 0), the wave becomes oblique, with a longitudinal com-
ponent, which is then subject to damping. Indeed, any Alfven wave of limited
transverse scale has a longitudinal component which is subject to Landau

damping. So the primary question appears to be the existence of sufficiently

strong hydromagnetic waves, and the sources of such waves. Thus it is of

primary importance to confirm or deny the existence of waves of 50-100 km/sec
amplitude, which is a difficult, if not impossible, task because the coronal

holes are so tenuous. Studies of the active and quiet coronas around the

periphery of the coronal hole may be informative, in view of the ideas put

forth by Fla et al. [1984].

In conclusion it seems to be that the heating of the coronal hole is not without

mystery. The energy supply responsible for both the fast and slow streams

is simply not clear. This is a fundamental gap in our understanding of the

origin and the activity of interplanetary space in particular and stellar physics

in general.

This work was supported by the National Aeronautics and Space Administra-

tion under grant NGL-14-001-001.

REFERENCES

Athay, R. G., and Holzer, T. E., 1982, Astrophys. J., 255, 743.

Athay, G., and White, O. R., 1978, Astrophys. J., 266, 1135.

Athay, G., and White, O. R., 1979a, Astrophys. J., 229, 1147.

82



ORIGINAL PAGE IS

OF POOR QUALITY

Athay, G., and White, O. R., 1979b, Astrophys. J. Supp., 39, 333.

Barnes, A., 1966, Phys. Fluids, 9, 1483.

Barnes, A., 1969, Astrophys. J., 155, 311.

Barnes, A., 1974, Adv. Electronics Electron Phys., 35, 1.

Barnes, A., 1979, in Solar System Plasma Physics, Vol. I, ed. E. N. Parker,

C. F. Kennel, and L. J. Lanzarotti (New York: North Holland), pp. 249-319.

Barnes, A., Hartle, R. E., and Bredekamp, J. H., 1971, Astrophys. J. Let-
ters, 166, L53.

Beckers, J. M., 1976, Astrophys. J., 203, 739.

Beckers, J. M., and Schneeberger, T. J., 1977, Astrophys. J., 215, 356.

Brueckner, G. E., and Bartoe, J. D. F., 1983, Astrophys. J., 272, 329.

Bruner, E. C., 1978, Astrophys. J., 226, 1140.

Cheng, C. C., Doschek, G. A., and Feldman, U., 1979, Astrophys. J., 227,
1037.

Davila, J. M., 1985, Astrophys. J., 291, 328.

Feldman, U., 1983, Astrophys. J., 275, 367.

Fla, T., Habbal, S. R., Holzer, T. E., and Leer, E., 1984, Astrophys. J.,
280, 382.

Golub, L., Maxson, C., Rosner, R., Serio, S., and Vaiana, G. S., 1980,
Astrophys. J., 238, 343.

Habbal, S. R., and Leer, E., 1982, Astrophys. J., 253, 318.

Habbal, S. R., Leer, E., and Holzer, T. E., 1979, Solar Phys., 64, 287.

83



I,

Hollweg, J. V., Jackson, S., and Galloway, D., 1982, Solar Phys., 75, 35.

Holzer, T. E., and Leer, E., 1980, J. Geophys. Res., 85, 4665.

Hundhausen, A. J., 1972, Coronal Expansion and the Solar Wind (New York:

Springer-Verlag).

Hundhausen, A. J., 1977, in Coronal Holes and High Speed Wind Streams

(Boulder, CO: Colorado Associated University Press), pp. 292-319.

Hung, R. J., and Barnes, A., 1973a, Astrophys. J., 180, 253.

Hung, R. J., and Barnes, A., 1973b, Astrophys. J., 180, 271.

Hung, R. J., and Barnes, A., 1973c, Astrophys. J., 151, 183.

Krieger, A. S., Timothy, A. F., and Roelof, E. C., 1973, Solar Phys., 29, 505.

Leer, E., and Holzer, T. E., 1980, J. Geophys. Res., 85, 4681.

Leer, E., Holzer, T. E., and Fla, T., 1982, Space Sci. Rev., 33, 161.

Low, B. C., 1985, Solar Phys., 100, 309.

Orrall, F. Q., Rottman, G. J., and Klimchuk, J. A., 1983, Astrophys. J. Let-

ters, 266, L65.

Parker, E. N., 1963, Interplanetary Dynamical Processes (New York: John

Wiley and Sons).

Parker, E. N., 1979, Cosmical Magnetic Fields (Oxford: Clarendon Press).

Parker, E. N., 1982, Geophys. Astrophys. Fluid Dyn., 22, 195.

Parker, E. N., 1983a, Geophys. Astrophys. Fluid Dyn., 23, 85.

Parker, E. N., 1983b, Geophys. Astrophys. Fluid Dyn., 24, 79.

84



Parker,E. N., 1983c, Astrophys. J., 264, 642.

Parker, E. N., 1984, in Proceedings of III Trieste Workshop on Relations

Between Chromospheric-Coronal Heating and Mass Loss in Stars, Sacramento
Peak Observatory, 18-25 August, ed. R. Stalio and J. B. Zirker, pp. 301-17.

Parker, E. N., 1985, Geophys. Astrophys. Fluid Dyn., in press.

Rosner, R., Tucker, W. H., and Vaiana, G. S., 1978, Astrophys. J., 220, 643.

Rottman, G. J., Orrall, F. Q., and Klimchuk, J. A., 1982, Astrophys. J.,

260, 326.

Sterling, A. C., and Hollweg, J. V., 1984, Astrophys. J., 285, 843.

Svalgaard, L., and Wilcox, J. M., 1975, Solar Phys., 41, 461.

Svalgaard, L., Wilcox, J. M., and Duvall, T. L., 1974, Solar Phys., 37, 157.

Svalgaard, L., Wilcox, J. M., Scherer, P. H., and Howard, R., 1975, Solar

Phys., 45, 83.

Wilcox, J. M., 1968, Space Sci. Rev., 8, 258.

Withbroe, G. L., 1983, Astrophys. J., 267, 825.

Withbroe, G. L., Habbal, S. R., and Ronan, R., 1985, Solar Phys., in press.

Withbroe, G. L., Kohl, J. L., Weiser, H., and Munro, R. H., 1985, Astrophys.
J., 297, 324.

Withbroe, G. L., and Noyes, R. W., 1977, AnnualRev. Astron. Astrophys.,

15, 363.

Zirker, J. B., 1977, in Coronal Holes and High Speed Wind Stream, ed. J. B.
Zirker (Boulder, CO: Colorado Associated University Press).

85


